The largest hub of ready-to-use datasets for ML models with fast, easy-to-use and efficient data manipulation tools
🤗 Datasets is a lightweight library providing **two** main features:
- **one-line dataloaders for many public datasets**: one-liners to download and pre-process any of the ![number of datasets](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/datasets&color=brightgreen) major public datasets (image datasets, audio datasets, text datasets in 467 languages and dialects, etc.) provided on the [HuggingFace Datasets Hub](https://huggingface.co/datasets). With a simple command like `squad_dataset = load_dataset("squad")`, get any of these datasets ready to use in a dataloader for training/evaluating a ML model (Numpy/Pandas/PyTorch/TensorFlow/JAX),
- **efficient data pre-processing**: simple, fast and reproducible data pre-processing for the public datasets as well as your own local datasets in CSV, JSON, text, PNG, JPEG, WAV, MP3, Parquet, etc. With simple commands like `processed_dataset = dataset.map(process_example)`, efficiently prepare the dataset for inspection and ML model evaluation and training.
[🎓 **Documentation**](https://huggingface.co/docs/datasets/) [🔎 **Find a dataset in the Hub**](https://huggingface.co/datasets) [🌟 **Share a dataset on the Hub**](https://huggingface.co/docs/datasets/share)
🤗 Datasets is designed to let the community easily add and share new datasets.
🤗 Datasets has many additional interesting features:
- Thrive on large datasets: 🤗 Datasets naturally frees the user from RAM memory limitation, all datasets are memory-mapped using an efficient zero-serialization cost backend (Apache Arrow).
- Smart caching: never wait for your data to process several times.
- Lightweight and fast with a transparent and pythonic API (multi-processing/caching/memory-mapping).
- Built-in interoperability with NumPy, pandas, PyTorch, TensorFlow 2 and JAX.
- Native support for audio and image data.
- Enable streaming mode to save disk space and start iterating over the dataset immediately.
🤗 Datasets originated from a fork of the awesome [TensorFlow Datasets](https://github.com/tensorflow/datasets) and the HuggingFace team want to deeply thank the TensorFlow Datasets team for building this amazing library. More details on the differences between 🤗 Datasets and `tfds` can be found in the section [Main differences between 🤗 Datasets and `tfds`](#main-differences-between--datasets-and-tfds).
# Installation
## With pip
🤗 Datasets can be installed from PyPi and has to be installed in a virtual environment (venv or conda for instance)
```bash
pip install datasets
```
## With conda
🤗 Datasets can be installed using conda as follows:
```bash
conda install -c huggingface -c conda-forge datasets
```
Follow the installation pages of TensorFlow and PyTorch to see how to install them with conda.
For more details on installation, check the installation page in the documentation: https://huggingface.co/docs/datasets/installation
## Installation to use with PyTorch/TensorFlow/pandas
If you plan to use 🤗 Datasets with PyTorch (1.0+), TensorFlow (2.2+) or pandas, you should also install PyTorch, TensorFlow or pandas.
For more details on using the library with NumPy, pandas, PyTorch or TensorFlow, check the quick start page in the documentation: https://huggingface.co/docs/datasets/quickstart
# Usage
🤗 Datasets is made to be very simple to use - the API is centered around a single function, `datasets.load_dataset(dataset_name, **kwargs)`, that instantiates a dataset.
This library can be used for text/image/audio/etc. datasets. Here is an example to load a text dataset:
Here is a quick example:
```python
from datasets import load_dataset
# Print all the available datasets
from huggingface_hub import list_datasets
print([dataset.id for dataset in list_datasets()])
# Load a dataset and print the first example in the training set
squad_dataset = load_dataset('squad')
print(squad_dataset['train'][0])
# Process the dataset - add a column with the length of the context texts
dataset_with_length = squad_dataset.map(lambda x: {"length": len(x["context"])})
# Process the dataset - tokenize the context texts (using a tokenizer from the 🤗 Transformers library)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
tokenized_dataset = squad_dataset.map(lambda x: tokenizer(x['context']), batched=True)
```
If your dataset is bigger than your disk or if you don't want to wait to download the data, you can use streaming:
```python
# If you want to use the dataset immediately and efficiently stream the data as you iterate over the dataset
image_dataset = load_dataset('cifar100', streaming=True)
for example in image_dataset["train"]:
break
```
For more details on using the library, check the quick start page in the documentation: https://huggingface.co/docs/datasets/quickstart and the specific pages on:
- Loading a dataset: https://huggingface.co/docs/datasets/loading
- What's in a Dataset: https://huggingface.co/docs/datasets/access
- Processing data with 🤗 Datasets: https://huggingface.co/docs/datasets/process
- Processing audio data: https://huggingface.co/docs/datasets/audio_process
- Processing image data: https://huggingface.co/docs/datasets/image_process
- Processing text data: https://huggingface.co/docs/datasets/nlp_process
- Streaming a dataset: https://huggingface.co/docs/datasets/stream
- Writing your own dataset loading script: https://huggingface.co/docs/datasets/dataset_script
- etc.
# Add a new dataset to the Hub
We have a very detailed step-by-step guide to add a new dataset to the ![number of datasets](https://img.shields.io/endpoint?url=https://huggingface.co/api/shields/datasets&color=brightgreen) datasets already provided on the [HuggingFace Datasets Hub](https://huggingface.co/datasets).
You can find:
- [how to upload a dataset to the Hub using your web browser or Python](https://huggingface.co/docs/datasets/upload_dataset) and also
- [how to upload it using Git](https://huggingface.co/docs/datasets/share).
# Main differences between 🤗 Datasets and `tfds`
If you are familiar with the great TensorFlow Datasets, here are the main differences between 🤗 Datasets and `tfds`:
- the scripts in 🤗 Datasets are not provided within the library but are queried, downloaded/cached and dynamically loaded upon request
- the backend serialization of 🤗 Datasets is based on [Apache Arrow](https://arrow.apache.org/) instead of TF Records and leverage python dataclasses for info and features with some diverging features (we mostly don't do encoding and store the raw data as much as possible in the backend serialization cache).
- the user-facing dataset object of 🤗 Datasets is not a `tf.data.Dataset` but a built-in framework-agnostic dataset class with methods inspired by what we like in `tf.data` (like a `map()` method). It basically wraps a memory-mapped Arrow table cache.
# Disclaimers
🤗 Datasets may run Python code defined by the dataset authors to parse certain data formats or structures. For security reasons, we ask users to:
- check the dataset scripts they're going to run beforehand and
- pin the `revision` of the repositories they use.
If you're a dataset owner and wish to update any part of it (description, citation, license, etc.), or do not want your dataset to be included in the Hugging Face Hub, please get in touch by opening a discussion or a pull request in the Community tab of the dataset page. Thanks for your contribution to the ML community!
## BibTeX
If you want to cite our 🤗 Datasets library, you can use our [paper](https://arxiv.org/abs/2109.02846):
```bibtex
@inproceedings{lhoest-etal-2021-datasets,
title = "Datasets: A Community Library for Natural Language Processing",
author = "Lhoest, Quentin and
Villanova del Moral, Albert and
Jernite, Yacine and
Thakur, Abhishek and
von Platen, Patrick and
Patil, Suraj and
Chaumond, Julien and
Drame, Mariama and
Plu, Julien and
Tunstall, Lewis and
Davison, Joe and
{\v{S}}a{\v{s}}ko, Mario and
Chhablani, Gunjan and
Malik, Bhavitvya and
Brandeis, Simon and
Le Scao, Teven and
Sanh, Victor and
Xu, Canwen and
Patry, Nicolas and
McMillan-Major, Angelina and
Schmid, Philipp and
Gugger, Sylvain and
Delangue, Cl{\'e}ment and
Matussi{\`e}re, Th{\'e}o and
Debut, Lysandre and
Bekman, Stas and
Cistac, Pierric and
Goehringer, Thibault and
Mustar, Victor and
Lagunas, Fran{\c{c}}ois and
Rush, Alexander and
Wolf, Thomas",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-demo.21",
pages = "175--184",
abstract = "The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets.",
eprint={2109.02846},
archivePrefix={arXiv},
primaryClass={cs.CL},
}
```
If you need to cite a specific version of our 🤗 Datasets library for reproducibility, you can use the corresponding version Zenodo DOI from this [list](https://zenodo.org/search?q=conceptrecid:%224817768%22&sort=-version&all_versions=True).
문의하기
비즈니스 개발자를 위한 최신 정보를 원하십니까? 소스 코드 프로젝트에 대한 PieceX 커뮤니티의 요구사항을 알아보세요. PieceX의 최신 무료 커뮤니티 코드를 빠르게 알려드립니다.
쿠키 타임!
당사는 웹 사이트에서의 사용자 경험을 개선하고 트래픽을 분석하기 위해 쿠키 및 기타 기술을 사용합니다. 당사 웹 사이트를 탐색하면 쿠키 및 기타 추적 기술 사용에 동의하는 것으로 간주됩니다.
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
항목 제거
PieceX에 항목을 업로드해 주셔서 감사합니다.\r\rPieceX에서 항목을 제거해야 하는 이유와 필요한 세부 정보를 담은 이메일을 piecex@oneact.jp 으로 보내주십시오.\r상품 아래에 있는 수정 아이콘을 클릭하여 언제든지 제품을 수정할 수 있다는 점을 알려드립니다.\r 제품을 수정하거나 소스 코드 파일을 다시 업로드/업데이트하려면 여기를 클릭하십시오.“